Mechanisms of Asian Summer Monsoon Changes in Response to Anthropogenic Forcing in CMIP5 Models*
نویسندگان
چکیده
Changes of the Asian summer monsoon in response to anthropogenic forcing are examined using observations and phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel, multirealization ensemble. In the twentieth century, CMIP5 models indicate a predominantly drying Asian monsoon, while in the twenty-first century under the representative concentration pathway 8.5 (RCP8.5) scenario, monsoon rainfall enhances across the entire Asian domain. The thermodynamic and dynamic mechanisms causing the changes are evaluated using specific humidity and winds, as well as the moisture budget. The drying trend in the CMIP5 historical simulations and the wetting trend in the RCP8.5 projections can be explained by the relative importance of dynamic and thermodynamic contributions to the total mean moisture convergence. While the thermodynamic mechanism dominates in the future, the historical rainfall changes are dominated by the changes in circulation. The relative contributions of aerosols and greenhouse gases (GHGs) on the historical monsoon change are further examined using CMIP5 single-forcing simulations. Rainfall reduces under aerosol forcing and increases under GHG forcing. Aerosol forcing dominates over the greenhouse effect during the historical period, leading to the general drying trend in the all-forcing simulations. While the thermodynamic change of mean moisture convergence in the all-forcing case is dominated by the GHG forcing, the dynamic change of meanmoisture convergence in the all-forcing case is dominated by the aerosol forcing.
منابع مشابه
Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models
In this study, we examined the responses of East Asian summer monsoon (EASM) to natural (solar variability and volcanic aerosols) and anthropogenic (greenhouse gasses and aerosols) forcings simulated in the 17 latest Coupled Model Intercomparison Program phase 5 models with 105 realizations. The observed weakening trend of low-level EASM circulation during 1958–2001 is partly reproduced under a...
متن کاملEvaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region
1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...
متن کاملImpacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models
Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison ...
متن کاملEarly Summer Response of the East Asian Summer Monsoon to Atmospheric CO2 Forcing and Subsequent Sea Surface Warming
The early summer regional climate change of the East Asian summer monsoon (EASM) is investigated in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive. In the greenhouse gas–forced scenario, reduction of radiative cooling and increase in continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the ear...
متن کاملUnderstanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change
It is now widely accepted that the global hydrological cycle will become more intensified in a warmer climate, as a consequence of the increase in tropospheric water vapor following the Clausius–Clapeyron relationship, leading to the so-called “wet-get-wetter, dry-get-dryer” pattern of change (Held and Soden 2006). Because of energetic constraints (Takahashi 2009; O’Gorman et al. 2012), the rat...
متن کامل